The Digital Twin Theory - Eine neue Sicht auf ein Modewort

The Digital Twin Theory - Eine neue Sicht auf ein Modewort

München, 22. Februar 2019, Ursprüngliche Veröffentlichung "Industrie 4.o Management", 1/2019, online hier

Autoren
Prof. Dr. rer. nat. Dipl.-Ing. Andreas Deuter ist seit 2015 Professor für Informatik in Technik und Produktion im Fachbereich Produktion und Wirtschaft an der Hochschule Ostwestfalen-Lippe. Im Mittelpunkt seiner Forschungen stehen Softwareentwicklungsprozesse in der produzierenden Industrie mit besonderem Fokus auf deren optimale Integration in einen überlagerten Produktlebenszyklus.

Florian Pethig, M. Sc., ist IT-Ingenieur und arbeitet seit 2011 am Fraunhofer IOSB-INA an Lösungen für Datenakquise und -management in der Automation. Seit 2017 leitet er dort eine Forschungsgruppe zu Big Data Plattformen. Seine Forschungsschwerpunkte sind interoperable Informationsmodelle und Kommunikation für Industrie 4.0. Er ist Hauptautor eines VDMA-Leitfadens zur Industrie 4.0-Kommunikation und Vorsitzender der Arbeitsgruppe I4AAS, einer gemeinsamen Initiative von OPC Foundation, ZVEI und VDMA. Außerdem ist er aktives Mitglied der Plattform Industrie 4.0 (GMA 7.20).

Kontakt

andreas.deuter@hs-owl.de
https://www.hs-owl.de/fb7/laboratorien/informatik-fuer-technik-und-produktion.html

florian.pethig@iosb-ina.fraunhofer.de
www.bigdata-owl.de

Im digitalen Zwilling wird ein wesentliches Mittel für Produktivitätssteigerungen im Zeitalter der industriellen Digitalisierung gesehen. Daher beschäftigen sich zahlreiche Publikationen mit diesem Begriff. Dieser Beitrag zeigt zunächst die Ursprünge des Begriffs und setzt sich mit ausgewählten Definitionen auseinander. Diese unterstützen allerdings wenig bei der praktischen Implementierung von digitalen Zwillingen, da sich die Definitionen zum Teil stark unterscheiden. Als Alternative zu einer klassischen Definition wird daher ein Theoriemodell vorgeschlagen, das Annahmen über den digitalen Zwilling enthält. Dieser neuartige Denkansatz soll helfen, das Management von digitalen Zwillingen in der Praxis zu verbessern.

Eine digitalisierte Industrie bietet großes wirtschaftliches Potenzial: Allein im Maschinen- und Anlagenbau sei durch Industrie 4.0 eine kumulierte Produktivitätssteigerung bis zum Jahr 2025 von 30 % zu erwarten [1]. Diese Steigerung basiert im Kern auf der nahtlosen Vernetzung aller Akteure und Systeme sowohl horizontal als auch vertikal.

Der Verbesserung der vertikalen Vernetzung der Hierarchieebenen entsprechend der IEC 62264 sowie auf ihr beruhende Verfahren und Dienste widmen sich bereits verschiedene Forschungsarbeiten. Als Beispiel seien Arbeiten zum Thema „Predictive Maintenance“ auf Basis von Sensordaten genannt [2]. Ebenso sind Lösungen für die ungünstige Situation bei der vertikalen Informationsintegration bedingt durch heterogene Feldbusse und IT-Protokolle in Arbeit, zum Beispiel wird aktuell eine übergreifende Industrie 4.0-Kommunikation auf Basis von standardisierten Informationsmodellen erarbeitet [3].

Notwendigkeit für Digitale Zwillinge

In Zukunft können Maschinen und Anlagen ohne den bislang notwendigen hohen Integrationsaufwand per „Plug & Monitor“ in übergeordnete Systeme eingebunden werden. Jedoch genügt die vertikale Vernetzung nicht allein, um die erstrebten Produktivitätssteigerungen zu erreichen.

Der nächste notwendige Schritt ist die stärkere horizontale Vernetzung der Wertschöpfungsketten. Diese horizontale Vernetzung ist im Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0) der IEC 62890 in der Life Cycle & Value Stream-Achse beschrieben [4]. Entlang dieser Achse, die den Produktlebenszyklus Entstehung, Produktion, Verwendung etc. darstellt, muss sich der Praktiker heute mit proprietären Schnittstellen und Informationsmodellen auseinandersetzen [5]. Strukturinformationen und Modelle aus Design- und Engineering-Werkzeugen könnten beispielsweise die Diagnose von Produktionsmaschinen im Fehlerfall erleichtern, sind jedoch bislang inkompatibel zu dort eingesetzten Systemen. Folglich wird die größte Produktivitätssteigerung in diesem Bereich im kostenintensiven Engineering erwartet [6]. Eine besondere Rolle spielt dabei der digitale Zwilling. Laut Gartner hätten er als wichtiges Element des Produktlebenszyklusmanagements das Potential für die Einsparung von mehreren Milliarden von Euros [7].

Der digitale Zwilling wirkt neben der Life Cycle & Value Stream-Achse auch in der Layer-Achse und in der Hierarchy Levels-Achse von RAMI 4.0. Bild 1 zeigt symbolisch den RAMI 4.0-Raum, in dem der digitale Zwilling „schwebt“. Allerdings helfen solche Bilder den Praktikern nicht bei der Klärung, wie die erhofften Produktivitätssteigerungen zu realisieren sind. Daher werfen wir zunächst einen tieferen Blick auf die aktuelle Definitionslage zum Digitalen Zwilling.

Heterogene Definitionslage

Bild 1Bild 1: Digitaler Zwilling im Kontext von RAMI 4.0

In der technischen Domäne ist ein Zwilling seit den späten 1960er Jahren durch die NASA bekannt. Damit war der identische Nachbau eines Raumfahrzeugs gemeint, der auf der Erde verblieb, um die Auswirkungen von Steuerbefehlen zu analysieren, bevor diese an das entfernte Raumfahrzeug gesendet werden. Es war wiederum die NASA, die im Jahr 2010 erstmals das Attribut „digital“ einem technischen Zwilling hinzufügte. Sie meinte damit ein Simulationsmodell, das das Verhalten eines physikalischen Raumfahrzeugs abbildet [8].

Ungefähr zeitgleich wurde der Begriff in der industriellen Domäne eingeführt. Damit war das virtuelle Abbild eines physischen Produkts in PLM-Systemen gemeint (PLM - Product Lifecycle Management) [9]. Populär wurde der Begriff allerdings erst mit dem Aufkommen der Idee von Industrie 4.0 und als Firmen begannen, den digitalen Zwilling für das eigene Marketing zu nutzen, wie zum Beispiel in [10]. Seitdem sind zahlreiche Definitionen entstanden, wie die folgende Auswahl zeigt:

Der digitale Zwilling ist eine digitale Repräsentanz von Dingen aus der realen Welt [11]; ein Konzept, mit dem Daten und Informationen von Atomen zu Bits zugeordnet werden [12]; ein computergestütztes Modell eines materiellen oder immateriellen Objekts [13]; eine umfangreiche physische und funktionale Repräsentanz eines Produkts, die alle Informationen für dessen Bearbeitung enthält [14]; eine digitalisierte (3D-)Abbildung eines zu erstellenden Produkts [15]; ein Synonym für die Industrie 4.0-Verwaltungsschale [16].

Wie eine im Rahmen einer Seminararbeit durchgeführte systematische Mapping Studie gemäß dem in [17] beschriebenen Vorgehen zeigt, ließe sich die Liste der Definitionen verlängern. Die Studie, die bislang nur englischsprachige Artikel in den Datenbanken ACM Digital Library, Science Direct und IEEEXplore berücksichtig, führt 51 relevante Publikationen auf, in denen der digitale Zwilling definiert wird. Darüber hinaus kursieren weitere ähnliche Begriffe wie zum Beispiel digitaler Schatten, digitaler Master, digitaler Typ und digitale Instanz.

Daher kann folgendes Zwischenfazit gezogen werden: Es gibt eine Vielzahl an Definitionen, die sich in Umfang, Detailierungsgrad und technischem Fokus unterscheiden. Am ehesten wird unter dem digitalen Zwilling ein gestaltbehaftetes Simulationsmodell verstanden, allgemeingültig oder akzeptiert ist dies allerdings nicht. Grundsätzlich hindern zwar verschiedene Definitionen für einen wissenschaftlichen Gegenstand nicht, diesen Gegenstand zu implementieren. Im konkreten Fall jedoch sind zahlreiche Herausforderungen für das Management von digitalen Zwillingen bekannt, wie zum Beispiel die Identifikation und das Datenmanagement des Produkts entlang dem Produktlebenszyklus, die Erstellung von Simulationsmodellen in unterschiedlichen IT-Systemen und die Beherrschung der riesigen Datenmengen [18]. Die Formulierung einer präzisen Definition des Begriffs und das Hinwirken auf deren allgemeine Anerkennung wäre ein möglicher Ansatz, um die Bewältigung dieser Herausforderungen zu unterstützen. Wir stellen allerdings einen alternativen Denkansatz zur Diskussion, da es uns als unrealistisch erscheint, dass sich die vielen Stakeholder aus Wissenschaft und Industrie auf eine Definition einigen können.

The Digital Twin Theory

Bild 2Bild 2: Modell der Informationsanreicherung für digitale Zwillinge (gemäß [14])

Dieser Denkansatz ist ein auf Hypothesen aufgebautes Theoriemodell. Ausgangspunkt für die Hypothesen waren zum einen die Arbeiten in [14], demnach die Informationen, die einen digitalen Zwilling beschreiben, in jeder Phase des Produktlebenszyklus angereichert werden (Bild 2). Zum anderen reifte die Idee der „Digital Twin Theory“ während eines zufälligen Kontakts mit der Quantenphysik und dem Thema Elektronen: Aus Sicht der Quantenphysik befinden sich Elektronen an mehreren Orten gleichzeitig. Ihr Zustand ist solange unbekannt, bis sie in einen Beobachtungszustand versetzt werden. Es erschien spannend zu prüfen, ob diese Eigenschaften auch für digitale Zwillinge angenommen werden können.

Nach der ersten Formulierung wurden die Hypothesen mit Vertretern aus der Industrie diskutiert, u.a. auf einem Fachforum des OWL Maschinenbau e.V. im Juni 2018 [19] und auf der PLM Europe Konferenz im Oktober 2018 [20]. Anschließend wurden sie überarbeitet und umformuliert. Die Hypothesen der Digital Twin Theory sind:

  1. Ein digitaler Zwilling ist eine digitale Repräsentanz eines Assets.
  2. Ein digitaler Zwilling befindet sich an mehreren Orten gleichzeitig.
  3. Ein digitaler Zwilling hat vielfältige Zustände.
  4. In einer Interaktionssituation besitzt der digitale Zwilling einen kontextspezifischen Zustand.
  5. Das Informationsmodell für digitale Zwillinge ist unendlich groß, es ist ein reelles Informationsmodell.
  6. Das reelle Informationsmodell kann für ein spezifisches Anwendungsszenario endlich approximiert werden und wird dadurch zu einem rationalen Informationsmodell.
  7. Das rationale Informationsmodell ist nicht an einem Ort speicherbar.
  8. Das rationale Informationsmodell ist niemals vollständig sichtbar.

Zur Erläuterung dieser Hypothesen dient Bild 3. Ein Asset ist ein Gegenstand von Wert. Was ein Asset für ein spezifisches Anwendungsszenario konkret ist, hängt von dem Anwendungsszenario ab. Ob dieser Gegenstand materiell oder immateriell, ein Produkt oder ein Produktionssystem, ein Typ oder eine Instanz ist, ist unerheblich. Der digitale Zwilling wird entlang dem Produktlebenszyklus an mehreren Orten gleichzeitig sichtbar und interagiert an diesen Orten mit einem Aktor (Mensch, Maschine etc.). Folglich hat der digitale Zwilling vielfältige Zustände. Allerdings wird der digitale Zwilling in einer konkreten Interaktionssituation in einen kontextspezifischen Zustand versetzt. Ein Beispiel einer Interaktionssituation ist die Erstellung des CAD-Modells eines Produkttyps (Kontext) durch einen Konstrukteur (Aktor). Ein CAD-Modell hat in dem Fall einen Zustand (in Bearbeitung o.ä.). Ein anderes Beispiel einer konkreten Interaktion mit der digitalen Repräsentanz des gleichen Assets, also in dem Fall dem Produkttyp, ist das Softwaredesign (Kontext) durch einen Softwarearchitekten (Aktor).

Die einen digitalen Zwilling beschreibenden Informationen sind folglich sehr unterschiedlicher Natur und abhängig vom Asset. Daher ist es nicht möglich, ein vollständiges Informationsmodell für digitale Zwillinge zu definieren. Das Informationsmodell ist unendlich groß und als ein reelles Informationsmodell zu verstehen. Das Attribut „reell“ ist angelehnt an die Mathematik, in der der Bereich der reellen Zahlen die rationalen und die irrationalen Zahlen umfasst. Um allerdings mit einem digitalen Zwilling in einem spezifischen Anwendungsszenario interagieren zu können, muss ein approximiertes Informationsmodell existieren. Dies bezeichnen wir, wiederum angelehnt an die Mathematik, als das rationale Informationsmodell. Wie in Bild 3 zu sehen, verteilen sich die Daten des rationalen Informationsmodells entlang dem Produktlebenszyklus. Sie sind nicht an einer Stelle, zum Beispiel in einer zentralen Datenbank, gespeichert. Um die für eine konkrete Interaktionssituation benötigten Daten einem spezifischen Aktor zuzuführen, müssen diese Daten über eine geeignete Schnittstelleninfrastruktur transportiert werden. Folglich sind nie alle Daten des rationalen Informationsmodells vollständig sichtbar.

Was sollte daraus geschlussfolgert werden

Bild 3Bild 3: Mögliche Infrastruktur für digitale Zwillinge

Produktivitätssteigerungen können durch die Digitalisierung von Produkten und Produktion erreicht werden. Hierbei schreitet die vertikale Integration von Fabrik- und IT-Systemen mit großen Schritten voran. Die horizontale Integration über den Produktlebenszyklus mithilfe digitaler Zwillinge bietet jedoch mindestens ebenso großes Potenzial für Produktivitätssteigerungen insbesondere im Engineering. Digitale Zwillinge sind heute jedoch nicht eindeutig definiert und dadurch wird deren Management in der Praxis erschwert. Dieser Beitrag schlägt ein Theoriemodell vor, um sich von dem Versuch zu lösen, eine eindeutige Definition schaffen zu können und um sich auf konkrete Mechanismen und Mehrwerte des abstrakten Begriffs konzentrieren zu können.

Da eine wissenschaftliche Theorie nur widerlegt und nicht bewiesen werden kann, ist eine Auseinandersetzung mit den oben dargestellten Hypothesen notwendig. Dies erfolgte bislang nicht, da es das Ziel dieses Beitrags ist, die Idee der Digital Twin Theory einzuführen und als Alternative zu einer klassischen Definition zur Diskussion zu stellen. Um die Digital Twin Theory zu präzisieren, ist folglich in weiteren Forschungsarbeiten eine aktive Auseinandersetzung mit den darin enthaltenen Hypothesen erforderlich. Dazu wurde u. a. federführend durch das Fraunhofer IOSB-INA und die Hochschule Ostwestfalen-Lippe das Forschungsprojekt „Technische Infrastruktur für digitale Zwillinge“ im Rahmen des Spitzenclusters it’s OWL initiiert.

Literatur

[1] Bauer, W.; Ganschar, O.: Industrie 4.0 - Volkswirtschaftliches Potenzial für Deutschland, BITKOM-Studie, 2014
[2] Siemens provides online condition monitoring for predictive maintenance for NASA at the Armstrong Flight Center, https://news.usa.siemens.biz/press-release/condition-monitoring/siemens-provides-online-condition-monitoring-predictive-maintenan, Abrufdatum 20.11.2018
[3] Jasperneite, J.; Niggemann, O.: Industrie 4.0-Kommunikation auf Basis von OPC UA – Leitfaden für die Einführung in den Mittelstand, VDMA Verlag, 2017.
[4] DIN SPEC 91345: Referenzarchitekturmodell Industrie 4.0 (RAMI4.0), Deutsches Institut für Normung (DIN) e.V., 2016
[5] Wagner, C.; Grothoff, J.; Epple, U.; Drath, R., Somayeh, M.; Grüner, S.; Hoffmeister, M.; Zimermann, P. : The role of the Industry 4.0 asset administration shell and the digital twin during the life cycle of a plant, IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2017
[6] AlixPartners Industriegüterstudie 2018, URL: www.ots.at/presseaussendung/
OTS_20180605_OTS0071/alixpartners-industriegueterstudie-2018, Abrufdatum 20.11.2018
[7] Gartner: Top 10 Strategic Technology Trends for 2018, https://www.gartner.com/ smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2018/, [20.11.2018]
[8] Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; LeMoigne, J.; Wang, L.: Draft modeling, simulation, information technology & processing roadmap, Technology Area (11), 2010
[9] Grieve, M.: Virtually perfect: Driving Innovative and Lean Products through Product Lifecycle Management. Cocoa Beach, USA, 2011
[10] Siemens AG, Division Digital Factory: Advance Digital Enterprise – auf dem Weg zu Industrie 4.0, URL: www.siemens.com/content/dam/internet/siemens-com/customer-magazine/old-mam-assets/print-archiv/advance/adv152-de-screen.pdf, Abrufdatum 20.11.2018
[11] Kuhn, T.: Digitaler Zwilling. Informatik Spektrum 40, 5, S. 440-444, 2017
[12] Datta, S.P.A.: Emergence of Digital Twins. Computing Research Repository (CoRR) abs/1610.06467, 2016
[13] Grösser, S.: Digitaler Zwilling, https://wirtschaftslexikon.gabler.de/definition/digitaler-zwilling-54371/version-189152, Abrufdatum 20.11.2018
[14] Boschert, S.; Rosen, R.: Digital Twin ‐ The Simulation Aspect. In: Challenges and Solutions for Mechatronic Systems and their Designers, Springer, 2016
[15] Buchholz, B.; Ferdinand, J.-P.; Gieschen, J.-H.; Seidel, U.: Digitalisierung industrieller Wertschöpfung -Transformationsansätze für KMU: Eine Studie im Rahmen der Begleitforschung zum Technologieprogramm AUTONOMIK für Industrie 4.0 des Bundesministeriums für Wirtschaft und Energie, 2017
[16] VDI/VDE-GMA Fachausschuss 7.21., URL: i40.iosb.fraunhofer.de/
Digitaler%20Zwilling, Abrufdatum 20.11.2018
[17] Petersen, K.; Feldt, R.; Mujtaba, S.; Mattson, M.: Systematic Mapping Studies in Software Engineering. In: Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering, S. 68-77, 2008
[18] Ríos, J.; Hernández, J. C.; Oliva, M.; Mas, F.: Product Avatar as Digital Counterpart of a Physical Individual Product: Literature Review and Implications in an Aircraft, International Conference on Concurrent Engineering, S. 657-666, 2015
[19] OWL Maschinebau: Fachforum Digitalisierung konkret, https://www.owl-maschinenbau.de/asset/media/Einladungen/Einladung_Agenda_Forum_Digitalisierung%20konkret.pdf, Abrufdatum 20.11.2018
[20] PLM Europe 2018, https://www.plm-europe.org/agendapresenterinfo/agenda.html, Abrufdatum 20.11.2018
[21] it’s OWL, https://www.its-owl.de, Abrufdatum 20.11.2018

Schlüsselwörter:
Digitaler Zwilling, Industrie 4.0, Verwaltungsschale, Interoperabilität

Zurück

Add your Content here

Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu.